TABLE OF CONTENTS

• Pictorial Index
• Water Hammer Arrestors
 Certification
 Sizing & Placement
• Backwater Valves
 Typical Installations
• Trap Seal Primers
 Compliance
 Pressure & Flow Characteristics
 Typical Installations
• Trap Primer Adaptors
 Typical Installations
WATER HAMMER ARRESTORS & MISC. SPECIALTIES

PICTORIAL INDEX

A-200
Trap Seal Primer

BV-800
Sut-off Valve

MS-8000
Fresh Air Inlet

BV-200
In-Line Backwater Valve

BV-1000
Internal Backwater Valve

BV-240
In-Line Backwater Valve

MS-930
Trap Primer Adaptor

BV-600
Pit Drain

MS-950
Funnel/Trap Adapter

SS Series
Stainless Steel Shock Arrestor

P5 Series
Pipe Sleeves

SG Series
Copper Shock Arrestor

Photo not available at this time
Watts water hammer arrestors prevent water hammer in piping systems, which generally results from sudden changes in flow velocity. Solenoid-actuated and other types of quick closing valves create shock pressure, which can often cause water hammer (banging pipes). Properly installed arrestors will absorb the shock, eliminating noise and potential damage to the piping system.

Certification

All Watts water hammer arrestors are Certified by the Plumbing & Drainage Institute (PDI), in accordance with Standard PDI-WH201.

Pressure & Temperature Range

SG Series - 150 PSI maximum working pressure, 180 deg. F maximum temperature
SS Series - 150 PSI maximum working pressure, 300 deg. F maximum temperature

Sizing & Placement

The PDI fixture unit method is used. PDI methodology takes into consideration probabilities for coincidental valve closings, as well as pipe size, length, flow pressure, and velocity.

1.) Calculate the total number of fixture units (Table 1) on each hot and cold water line separately. Determine the total number of fixture units on a line by adding the unit values for each fixture.
2.) From Table 2, select the Watts water hammer arrestor with a fixture unit rating equal to, or greater than, the total number of fixture units on the line.
3.) For multiple fixture branch lines less than 20' in length, the water hammer arrestor should be installed between the last two fixtures (Fig. A).
4.) For multiple fixture branch lines over 20' in length, two water hammer arrestors should be used, with the second unit placed at the approximate midpoint of the line. The sum of the unit ratings for the two water hammer arrestors should be equal to, or greater than, the total fixture units for the line (Fig. B).
5.) For long runs of piping terminating at a piece of equipment, the water hammer arrestor size should be determined from Table 3. The arrestor(s) should be located as near as possible to the closure valve (Fig. C).

Note:

1.) Sizing recommendations are based upon an average flow velocity between 5 & 10 feet per second, and an operating pressure less than 65 PSI. For operating pressures over 65 PSI, use the next larger water hammer arrestor size. A pressure reducing valve is recommended for line pressures exceeding 85 PSI.

Calculation Example:

Cold Water Branch (Less than 20')
2 Water Closets @ 10 Fixture Units ea. = 20 Fixture Units
2 Lavatories @ 1-1/2 Fixture Units ea. = 3 Fixture Units
Total Fixture Units = 23
Select PDI Size #B Water Hammer Arrestor
Sizing & Placement

Table 1

<table>
<thead>
<tr>
<th>Fixture</th>
<th>Type of Supply</th>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Cold</td>
<td>Hot</td>
</tr>
<tr>
<td>Water Closet</td>
<td>Flush Valve</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Water Closet</td>
<td>Flush Tank</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Pedestal Urinal</td>
<td>Flush Valve</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Stall or Wall Urinal</td>
<td>Flush Valve</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Stall or Wall Urinal</td>
<td>Flush Tank</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Lavatory</td>
<td>1-1/2</td>
<td>1-1/2</td>
<td>1</td>
</tr>
<tr>
<td>Bathtub</td>
<td>2</td>
<td>3</td>
<td>1-1/2</td>
</tr>
<tr>
<td>Shower Head</td>
<td>2</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Bathroom Group</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Bathroom Group</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>Separate Shower</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Service Sink</td>
<td>3</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Laundry Tubs (1-3)</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Combination Fixture</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Fixture Unit Weight</th>
<th>1-11</th>
<th>12-32</th>
<th>33-60</th>
<th>61-113</th>
<th>114-154</th>
<th>155-330</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDI Symbol</td>
<td>#A</td>
<td>#B</td>
<td>#C</td>
<td>#D</td>
<td>#E</td>
<td>#F</td>
</tr>
<tr>
<td>Watts SG Series</td>
<td>SG-050</td>
<td>SG-075</td>
<td>SG-100</td>
<td>SG-125</td>
<td>SG-150</td>
<td>SG-200</td>
</tr>
<tr>
<td>Watts SS Series</td>
<td>SS-A</td>
<td>SS-B</td>
<td>SS-C</td>
<td>SS-D</td>
<td>SS-E</td>
<td>SS-F</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Length Of Pipe</th>
<th>Nominal Pipe Size</th>
<th>1/2"</th>
<th>3/4"</th>
<th>1"</th>
<th>1-1/4"</th>
<th>1-1/2"</th>
<th>2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>25'</td>
<td></td>
<td>#A</td>
<td>#A</td>
<td>#B</td>
<td>#C</td>
<td>#D</td>
<td>#E</td>
</tr>
<tr>
<td>50'</td>
<td></td>
<td>#A</td>
<td>#C</td>
<td>#C</td>
<td>#D</td>
<td>#E</td>
<td>#F</td>
</tr>
<tr>
<td>75'</td>
<td></td>
<td>#B</td>
<td>#C</td>
<td>#D</td>
<td>#A + #E</td>
<td>#F</td>
<td>#E + #F</td>
</tr>
<tr>
<td>100'</td>
<td></td>
<td>#C</td>
<td>#D</td>
<td>#E</td>
<td>#F</td>
<td>#C + #F</td>
<td>2-#F</td>
</tr>
<tr>
<td>125'</td>
<td></td>
<td>#C</td>
<td>#D</td>
<td>#F</td>
<td>#A + #F</td>
<td>#E + #F</td>
<td>#E + 2-#F</td>
</tr>
<tr>
<td>150'</td>
<td></td>
<td>#D</td>
<td>#E</td>
<td>#F</td>
<td>#D + #F</td>
<td>2-#F</td>
<td>3-#F</td>
</tr>
</tbody>
</table>

Figure A

Figure B

Figure C
BACKWATER VALVES

Flapper type backwater valves are specified in gravity flow (non-pressure) applications to restrict backflow from excessive rainfall, tidewater, or other drainage conditions. The bronze flapper valve should be periodically inspected and kept free of debris or other obstruction to assure proper functioning.

TYPICAL INSTALLATIONS

Flapper type backwater valves are specified in gravity flow (non-pressure) applications to restrict backflow from excessive rainfall, tidewater, or other drainage conditions. The bronze flapper valve should be periodically inspected and kept free of debris or other obstruction to assure proper functioning.

TRAP PRIMER ADAPTORS

Watts MS-930 Series Trap Primer Adaptors are specified when direct connection of trap primer lines is impractical, or undesirable. Typical applications include connections below a thick slab, and connections to Sanitary Floor Sinks, where a direct trap primer connection would damage the interior of the sink.

TYPICAL INSTALLATIONS

Watts MS-930 Series Trap Primer Adaptors are specified when direct connection of trap primer lines is impractical, or undesirable. Typical applications include connections below a thick slab, and connections to Sanitary Floor Sinks, where a direct trap primer connection would damage the interior of the sink.
Trap seal primers are specified to maintain a water seal in the trap of infrequently used drains. An unmaintained trap seal may allow sewer gases or vermin to enter the building through the drainage system.

Watts A-200 Trap Seal Primer operates to deliver spurts of water to the trap. A unique mechanism activates the primer twice in a complete flow cycle, delivering a spurt upon both the opening and closing of the fixture valve. Trap seal primers should be installed on the cold water supply line servicing a frequently sink or other fixture.

Compliance

Watts A-200 Trap Seal Primer complies with ANSI/ASSE Standard 1018.

Pressure & Flow Characteristics

Minimum Supply Pressure: 25 PSI
Maximum Supply Pressure: 125 PSI

<table>
<thead>
<tr>
<th>Inlet Pressure (PSI)</th>
<th>Minimum Flow Watts Required (GPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.1</td>
</tr>
<tr>
<td>50</td>
<td>1.6</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
</tr>
<tr>
<td>125</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Flow Curve

- Pressure Drop (kPa): 0, 5, 10, 15, 20, 25, 30
- Flow Rate (gpm): 0, 1.1, 1.6, 2.0, 2.3, 2.4, 3.0

Capacity

- Flow Chart:
 - Flow to Fixture: 4.2, 6.1, 7.6, 8.7, 9.1
 - Minimum cold flow required for proper trap priming.

Typical Installations

- Flow to Fixture: Cold Water Supply
- 1/2" Trap Primer Connection
- 1/2" Minimum to Horizontal Run in Pipe
- Vacuum Breaking Ports
- Floor Drain

S-WD-WH-6 0812